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Abstract

There has been rapid growth of software development. Due to various causes,

the software comes with many defects. In Software development process, testing

of software is the main phase which reduces the defects of the software. If a

developer or a tester can predict the software defects properly then, it reduces the

cost, time and effort. In this paper, we show a comparative analysis of software

defect prediction based on classification rule mining. We propose a scheme for this

process and we choose different classication algorithms. Showing the comparison

of predictions in software defects analysis. This evaluation analyzes the prediction

performance of competing learning schemes for given historical data sets(NASA

MDP Data Set). The result of this scheme evaluation shows that we have to choose

different classifier rule for different data set.

Keywords: Software defect prediction, classification Algorithm, Cofusion matrix.
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Chapter 1

Introduction

1.1 Introduction to Software Defect Prediction

There has been a huge growth in the demand for software quality during recent ages.

As a consequence, issues are related to testing, becoming increasingly critical. The

ability to measure software defect can be extremely important for minimizing cost

and improving the overall effectiveness of the testing process. The major amount of

faults in a software system are found in a few of its components.

Although there is variety in the definition of software quality, it is truly accepted

that a project with many defects lacks the quality of the software. Knowing the

causes of possible defects as well as identifying general software process areas that

may need attention from the initialization of a project could save money, time and

working effort. The possibility of early estimating the probable faultiness of software

could help on planning, controlling and executing software development activities. A

low cost method for defect analysis is learning from past mistakes to prevent future

ones. Today, there exist several data sets that could be mined in order to discover

useful knowledge regarding defects.

1



Chapter 1 Introduction

Using this knowledge one should ideally be able to:–

a. Identify potential fault-prone software.

b. Estimate the distinct number of faults, and

c. Discover the possible causes of faults..

1.2 Motivation

Different data mining methods have been proposed for defect analysis in the past,

but few of them manage to deal successfully with all of the above issues. Regression

models estimates are difficult to interpret and also provide the exact number of faults

which is too risky, especially in the beginning of a project when too little information

is available. On the other hand classication models that predict possible faultiness

can be specific, but not so much usefull to give clue about the actual number of

faults. Many researcher used many techniques with different dataset that predict

faultiness. But there are so many classification rule algorithms that can be effective

to predict faultiness. All these issues motivates to our research in these field of

software falult/defect prediction.

1.3 Objective

Keeping the research indications in view, it has been realized that there exists enough

scope to improve the software defect prediction. In this research the objectives are

confined to the followings: —

i. To utilize novel data set filtering mechanism for effective noise remove.

ii. To utilize novel classification algorithm for better prediction.

iii. To use better evalution measerment parameter to get better result.

2



Chapter 1 Introduction

iv. To decrease the software development cost, time and effort.

1.4 Structure of This Thesis

The remaining portion of this thesis is organized as follows:

• Chapter 2 describes the related background materials. This also includes a

deffination of software defect prediction, classification, classifier etc. which are

need to know for this research. This chapter also describes some of the broad

categories of classification algorithms. It also describes the related works has

been done in the past. It details the benefits and detriments of these different

approaches.

• Chapter 3 describes an framework for software defect prediction. This also

describes, how the framework has been evaluated in different steps. It also

details the datasets that will be explored. And details the measerment

parameters for defect prediction.

• Chapter 4 shows the results of the previously documented experiments. Here,

we will show the difference in performance of global and locality based

classifiers. Any discrepancies between the results shown here and prior results

will be explained here.

• Chapter 6 lists the conclusions gathered from the experiments. We comment on

the state of locality based learning as it pertains to software defect prediction.

Finally, we detail what future research are needed to explore for software defect

prediction.

3



Chapter 2

Background & Literature Survey

The purpose of this chapter is to establish a theoretical background for the project.

The focus of this study will be on software defects and effort spent correcting software

defects. However, it is necessary to explore research areas which influence or touches

software defects. Poor software quality may be manifested through severe software

defects, or software maintenance may be costly due to many defects requiring

extensive effort to correct. Last, we explore relevant research methods for this study.

The following digital sources was consulted:ACM Digital Library, IEEE Xplore, and

Science Direct.

2.1 Data Mining for software Engineering

To improve the software productivity and quality, software engineers are applying

data mining algorithms to various SE tasks. Many algorithms can help engineers

figure out how to invoke API methods provided by a complex library or framework

with insufficient documentation. In terms of maintenance, such type of data mining

algorithms can assist in determining what code locations must be changed when

another code location is changed. Software engineers can also use data mining

algorithms to hunt for potential bugs that can cause future in-field failures as well

as identify buggy lines of code (LOC) responsible for already-known failures. The

4



Chapter 2 Background & Literature Survey

second and third columns of Table 2.1 list several example data mining algorithms

and the SE tasks to which engineers apply them [1].

Table 2.1: Example software engineering data, Mining algorithm, SE tasks

SE Data Mining algo. SE Tasks

Sequences:

execution/ static

traces, co-changes

Frequent itemset/

sequence/

partial-order

mining, sequence

matching/ clustering/

classification

Programming,

maintenance, bug

detection, debugging

Graphs: dynamic/

static call

graphs, program

dependence graphs

Frequent subgraph

mining, graph

matching/ clustering/

classification

Bug detection,

debugging

Text: bug

reports, e-mails,

code comments,

documentation

Text matching/

clustering/

classification

Maintenance, bug

detection, debugging

2.2 Software defect predictor

A defect predictor is a tool or method that guides testing activities and software

development lifecycle. According to Brooks, half the cost of software development

is in unit and systems testing. Harold and Tahat also conform that testing phase

requires approximately 50% or more of the whole project schedule. Therefore, the

5



Chapter 2 Background & Literature Survey

main challenge is the testing phase and practitioners seek predictors that indicate

where the defects might exist before they start testing. This allows them to efficiently

allocate their scarce resources. Defect predictors are used to make an ordering of

modules to be inspected by veriffication and validation teams:

• In the case where there are insufficient resources to inspect all code (which is

a very common situation in industrial developments), defect predictors can be

used to increase the chances that the inspected code will have defects.

• In the case where all the code is to be inspected, but that inspection process will

take weeks to months to complete, defect predictors can be used to increase the

chances that defective modules will be inspected earlier. This is useful since it

gives the development team earlier notification of what modules require rework,

hence giving them more time to complete that rework prior to delivery.

2.3 Defect Prediction as a Classification Problem

Software defect prediction can be viewed as a supervised binary classification

problem [2] [3]. Software modules are represented with software metrics, and

are labelled as either defective or non-defective. To learn defect predictors, data

tables of historical examples are formed where one column has a boolean value for

”defects detected” (i.e. dependent variable) and the other columns describe software

characteristics in terms of software metrics (i.e. independent variables).

2.4 Binary classification

In machine learning and statistics, classification is the problem of identifying to

which of a set of categories (sub-populations) a new observation belongs, on the

basis of a training set of data containing observations (or instances) whose category

membership is known.

6



Chapter 2 Background & Literature Survey

Binary or binomial classification is the task of classifying the members of a given

set of objects into two groups on the basis of whether they have some property or

not.

Data Classification is two step process. In the first step, a classifier is built

describing a predetermined set of data classes or concepts. This is the learning

step(or training phase), where a classification algorithm is builds the classifier by

analyzing or ”learning form” a training set made up of database tuples and there

associated class labels.

In the second step the model is used for classification. Therefore, a test set is

used, make up of test tupples and there associated class labels.

A classification rule [3] takes the form X=> C, where X is a set of data items, and

C is the class (label) and a predetermined target. With such a rule, a transaction

or data record t in a given database could be classified into class C if t contains X.

2.5 Binary Classification Algorithms

2.5.1 Bayesian Classification

The Naive Bayesian classifier is based on Bayes theorem with independence

assumptions between predictors. A Naive Bayesian model is easy to build, with

no complicated iterative parameter estimation which makes it particularly useful for

very large datasets. Despite its simplicity, the Naive Bayesian classifier often does

surprisingly well and is widely used because it often outperforms more sophisticated

classification methods.

Algorithm:

Bayes theorem provides a way of calculating the posterior probability, P(c|x), from

P(c), P(x), and P(x|c). Naive Bayes classifier assume that the effect of the value of

a predictor (x) on a given class (c) is independent of the values of other predictors.

This assumption is called class conditional independence.

7



Chapter 2 Background & Literature Survey

Figure 2.1: Bayes theorem

• P(c|x) is the posterior probability of class (target) given predictor (attribute).

• P(c) is the prior probability of class.

• P(x|c) is the likelihood which is the probability of predictor given class.

• P(x) is the prior probability of predictor.

Example:

The posterior probability can be calculated by first, constructing a frequency table

for each attribute against the target. Then, transforming the frequency tables

to likelihood tables and finally use the Naive Bayesian equation to calculate the

posterior probability for each class. The class with the highest posterior probability

is the outcome of prediction.

2.5.2 Rule-Based Classification

Rules are a good way of representing information or bits of knowledge. A rule-based

classifier uses a set of IF-THEN rules for classification. An IF-THEN rule is an

expression of the form-

IF condition THEN conclusion

Example:

8
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Figure 2.2: Baye’s theorem Example

IF age=youth AND student=yes THEN buys computer=yes

There are many rule-based classifier algorithms are there. Some of them are:

DecisionTable, OneR, PART, JRip, ZeroR.

2.5.3 Logistic Regression

In statistics, logistic regression or logit regression is a type of regression analysis

used for predicting the outcome of a categorical dependent variable (a dependent

variable that can take on a limited number of values, whose magnitudes are not

meaningful but whose ordering of magnitudes may or may not be meaningful)

based on one or more predictor variables.

An explanation of logistic regression begins with an explanation of the logistic

function, which always takes on values between zero and one:

f(t)= 1
1+e−t

9
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2.5.4 Decision Tree classification

Decision tree induction is the learning of decision trees from class-labled training

tuples. A desision tree is a flow chart like tree structure, where each internal

nodes(non-leaf node) denotes a test on an attribute , each brunch represents an

outcome of the test, each leaf node(or internal node) holds a class label. The topmost

node in a tree is the root node.

Figure 2.3: Example of Decision Tree

There are many algorithms developed using decision tree for classification with

some differences. Some of them like BFTree, C4.8/J48, J48Graft,and SimpleCart

are very popular.

2.6 Related Works

2.6.1 Regression via classification

In 2006, Bibi, Tsoumakas, Stamelos, Vlahavas, apply a machine learning approach to

the problem of estimating the number of defects called Regression via Classification

(RvC) [4].The whole process of Regression via Classification (RvC) comprises two

important stages:

10
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a) The discretization of the numeric target variable in order to learn a classification

model,

b) the reverse process of transforming the class output of the model into a numeric

prediction.

2.6.2 Static Code Attribute

Menzies, Greenwald, and Frank (MGF) [5] published a study in this journal in 2007

in which they compared the performance of two machine learning techniques (Rule

Induction and Naive Bayes) to predict software components containing defects. To

do this, they used the NASA MDP repository, which, at the time of their research,

contained 10 separate data sets.

2.6.3 ANN

In 2007, Iker Gondra [6]used a machine learning methods for defect prediction. He

used Artificial neural network as a machine learner.

2.6.4 Embedded software defect prdiction

In 2007, Oral and Bener [7] used Multilayer Perception (MLP), NB, VFI(Voting

Feature Intervals) for Embedded softwaredefect prediction. there they used only 7

data sets for evaluation.

2.6.5 Association rule classification

In 2011 Baojun, Karel [3] used classification based association rule named CBA2 for

software defect prediction.In these research they used assocition rule for clssafication.

and they compare with other classification rules such as C4.5 and Ripper.

11
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2.6.6 Defect-proneness Prediction framework

In 2011, Song, Jia, Ying, and Liu propased a general framework for software

defect-pronness prediction. in this research they use M*N cross validation with the

dataset(NASA, Softlab Dataset) for learining process. and they used 3 classification

algorithms(Naive baysed, OneR, J48). and they copared with MGF [5] framework.

In 2010 a research has benn done by Chen, Sen, Du Ge, [8] on software defect

prediction using datamining. In this reseach they used probabilistic Relational model

and Baysean Network.

12



Chapter 3

Proposed Scheme

3.1 Overview Of the Framework

In General, before building defect prediction model and using them for prediction

purposes, we first need to decide which learning scheme or learning algorithm should

be used to construct the model. Thus, the predictive performance of the learning

scheme should be determined, especially for future data. However, this step is

often neglected and so the resultant prediction model may not be Reliable. As a

consequence, we use a software defect prediction framework that provides guidance

to address these potential shortcomings.

The framework consists of two components:

1) scheme evaluation and

2) defect prediction.

Figure 3.1 contains the details. At the scheme evaluation stage, the performances

of the different learning schemes are evaluated with historical data to determine

whether a certain learning scheme performs sufficiently well for prediction purposes

or to select the best from a set of competing schemes.

From Figure 3.1, we can see that the historical data are divided into two parts:

a training set for building learners with the given learning schemes, and a test set

13



Chapter 3 Proposed Scheme

Figure 3.1: Proposed framework

for evaluating the performances of the learners. It is very important that the test

data are not used in any way to build the learners. This is a necessary condition

to assess the generalization ability of a learner that is built according to a learning

scheme and to further determine whether or not to apply the learning scheme or

select one best scheme from the given schemes.

At the defect prediction stage, according to the performance report of the first

stage, a learning scheme is selected and used to build a prediction model and predict

software defect. From Fig. 3.1, we observe that all of the historical data are used to

build the predictor here. This is very different from the first stage; it is very useful

for improving the generalization ability of the predictor. After the predictor is built,

it can be used to predict the defect-proneness of new software components.

MGF proposed [5] a baseline experiment and reported the performance of the

Naive Bayes data miner with log-filtering as well as attribute selection, which

performed the scheme evaluation but with in appropriate data. This is because

14



Chapter 3 Proposed Scheme

they used both the training (which can be viewed as historical data) and test (which

can be viewed as new data) data to rank attributes, while the labels of the new data

are unavailable when choosing attributes in practice.

3.2 Scheme Evaluation

The scheme evaluation is a fundamental part of the software defect prediction

framework. At this stage, different learning schemes are evaluated by building and

evaluating learners with them. The first problem of scheme evaluation is how to

divide historical data into training and test data. As mentioned above, the test data

should be independent of the learner construction. This is a necessary precondition

to evaluate the performance of a learner for new data. Cross-validationis usually

used to estimate how accurately a predictive model will perform in practice. One

round of cross-validation involves partitioning a data set into complementary subsets,

performing the analysis on one subset, and validating the analysis on the other

subset. To reduce variability, multiple rounds of cross-validation are performed

using different partitions, and the validation results are averaged over the rounds.

In our framework, an percentage split used for estimating the performance of

each predictive model, that is, each data set is first divided into 2 parts, and after

that a predictor is learned on 60% intances, and then tested on the remaining 40%.

To overcome any ordering effect and to achieve reliable statistics, each holdout

experiment is also repeated M times and in each repetition the data sets are

randomized. So overall, M*N(N=Data sets) models are built in all during the period

of evaluation; thus M*N results are obtained on each data set about the performance

of the each learning scheme.

After the training-test splitting is done each round, both the training data and

learning scheme(s) are used to build a learner. A learning scheme consists of a data

preprocessing method, an attribute selection method, and a learning algorithm.

Evaluation of the proposed framework is comprised of:

15



Chapter 3 Proposed Scheme

1. A data preprocessor

• The training data are preprocessed, such as removing outliers, handling missing

values, and discretizing or transforming numeric attributes.

• Here Preprocessor used-

NASA Preprocessing Tool

2. An attribute selector

• Here we have considered all the attributes pvovided by the NASA MDP Data

Set.

3. Learning Algorithms

– NaiveBayseSimple from bayse classification

– Logistic classification

– From Rule based classification

– DecisionTable

– OneR

– JRip

– PART

– From Tree based classification–

– J48

– J48Graft

16



Chapter 3 Proposed Scheme

3.3 Scheme Evaluation Algoritm

Data: Historical Data Set

Result: The mean performance values

1 M=12 :No of Data Set

2 i=1;

3 while i<=M do

4 Read Historical Data Set D[i];

5 Split Data set Intances using % split;

6 Train[i]=60% of D; % Training Data;

7 Learning(Train[i],scheme);

8 Test Data=D[i]-Train[i];% Test Data;

9 Result=TestClassifier(Test[i],Learner);

10 end

Algorithm 1: Scheme Evaluation

3.4 Defect prediction

The defect prediction part of our framework is straightforward; it consists of

predictor construction and defect prediction. During the period of the predictor

construction:

1. A learning scheme is chosen according to the Performance Report.

2. A predictor is built with the selected learning scheme and the whole historical

data. While evaluating a learning scheme, a learner is built with the training data

and tested on the test data. Its final performance is the mean over all rounds. This

reveals that the evaluation indeed covers all the data. Therefore, as we use all of the

historical data to build the predictor, it is expected that the constructed predictor

has stronger generalization ability.

3. After the predictor is built, new data are preprocessed in same way as historical

data, then the constructed predictor can be used to predict software defect with

preprocessed new data.

17
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3.5 Difference between Our Framework and

Others

So, to summarize, the main difference between our framework and that of others in

the following:

1) We choose the entire learning scheme, not just one out of the learning algorithm,

attribute selector, or data preprocessor;

2) we use the appropriate data to evaluate the performance of a scheme.

—-NASA MDP Data Set [9].

3)We choose percentage split for training data set(60%) and test dataset(40%).

3.6 Data Set

We used the data taken from the public NASA MDP repository, which was also used

by MGF and many others, e.g., [10], [11], [12], [13].Thus, there are 12 data sets in

total from NASA MDP repository.

Table 4.1, and 4.2 provides some basic summary information. Each data

set is comprised of a number of software modules (cases), each containing the

corresponding number of defects and various software static code attributes. After

preprocessing, modules that contain one or more defects were labeled as defective.

A more detailed description of code attributes or the origin of the MDP data sets

can be obtained from [5].
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Table 3.1: NASA MDP Data Sets

Data Set System Language Total Loc

CM1-5 Spacecraft Instrument C 17K

KC3-4 Storage management for ground data JAVA 8K and 25K

KC1-2 Storage management for ground data C++ *

MW1 Database C 8K

PC1,2,5 Flight Software for Earth orbiting Software C 26K

PC3,4 Flight Software for Earth orbiting Software C 30-36K

Table 3.2: Data Sets

Data Set Attribute Module Defect Defect(%)

CM1 38 344 42 1.22

JM1 22 9593 1759 18.34

KC1 22 2096 325 15.5

KC3 40 200 36 18

MC1 39 9277 68 0.73

MC2 40 127 44 34.65

MW1 38 264 27 10.23

PC1 38 759 61 8.04

PC2 37 1585 16 1.0

PC3 38 1125 140 12.4

PC4 38 1399 178 12.72

PC5 39 17001 503 2.96

3.7 Performance Measurement

The Performance measured according to the Confusion matix given in table:3.3, whis

is used by many researchers e.g [14], [5]. Table 3.3 illustartes a confusion matrix for

a two class problem having positive and negative class values.
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Table 3.3: Confusion Matix

Predicted Class

Positive Negative

Actual class Positive Trure Positive False Negative

Negative False Positive True negative

Software defect predictor performance of the proposed scheme based on Accuracy,

Sensitivity, Specificity, Balance, ROC Area defined as —

• Accuracy = TP+TN
TP+FP+TN+FN

= TruePositive+TrueNegative
TruePositive+FalsePositive+TrueNegative+FalseNegative

=The percentage of prediction that are correct.

• pd=True Positive Rate(tpr)=Sensitivity = TP
TP+FN

=The percentage of positive labled instances that predicted as positive

• Specificity = TN
FP+TN

=The percentage of positive labled instances that predicted as negative.

• pf=False Positive Rate(fpr)=1-specificity

=The percentage of Negative labled instances that predicted as negative

Formal definitions for pd and pf are given in the formula. Obviously, higher

pds and lower pfs are desired. The point (pd=1, pf=0) is the ideal position

where we recognize all defective modules and never make mistakes.

MGF introduced a performance measure called balance, which is used to choose

the optimal (pd, pf) pairs. The definition is shown bellow from which we can

see that it is equivalent to the normalized euclidean distance from the desired

point (0, 1) to (pf,pd) in a ROC curve.

• Balance = 1−
√

(1−pd)2+(0−pf)2
√
2
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The receiver operating characteristic(ROC) [15] [28], curve is often used to

evaluate the performance of binary predictors. A typical ROC curve is shown in

Fig. 3.2. The y-axis shows probability of detection (pd) and the x-axis shows

probability of false alarms (pf).

Formal definitions for pd and pf are given above. Obviously, higher pds and lower

pfs are desired. The point (pf=0, pd=1) is the ideal position where we recognize all

defective modules and never make mistakes.

Figure 3.2: Scheme evaluation of the proposed framework

The Area Under ROC Curve (AUC) is often calculated to compare different ROC

curves. Higher AUC values indicate the classifier is, on average, more to the upper

left region of the graph. AUC represents the most informative and commonly used,

thus it is used as another performance measure in this paper.
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Result Discussion

This section provides simulation results of some of the Classification algorithm

techniques collected by simulation on Software tool named weka(virsion 3.6.9). In

the thesis, however, proposed schemes are more comprehensively compared with

competent schemes.

According to best accuracy value we choose 8 classification algorithm among

many classification algorithms. All the evaluted values are collected and compare

with different performance measurement parameter.
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4.1 Accuracy

From the accuracy table 4.1 we can see different algorithm giving diffrent accuracy

on different data set. But the average performane nearly same.

For Storage management software(KC1-3) LOG, J48G giving better Accuracy value.

For database software written in c programming language (MW1) only PART giving

better accuracy value.

The performance graph is given in the figure 4.3.

Table 4.1: Accuracy

Methods NB LOG DT JRip OneR PART J48 J48G

CM1 83.94 87.68 89.13 86.23 89.13 73.91 86.23 86.96

JM1 81.28 82.02 81.57 81.42 79.67 81.13 79.8 79.83

KC1 83.05 86.87 84.84 84.84 83.29 83.89 85.56 85.56

KC3 77.5 71.25 75 76.25 71.25 81.25 80 82.5

MC1 94.34 99.27 99.25 99.22 99.3 99.19 99.3 99.3

MC2 66 66.67 56.86 56.86 56.86 70.59 52.94 54.9

MW1 79.25 77.36 85.85 86.79 85.85 88.68 85.85 85.85

PC1 88.82 92.11 92.43 89.14 91.45 89.8 87.83 88.49

PC2 94.29 99.05 99.37 99.21 99.37 99.37 98.9 98.9

PC3 34.38 84.67 80.22 82.89 82.89 82.67 82.22 83.56

PC4 87.14 91.79 90.18 90.36 90.18 88.21 88.21 88.93

PC5 96.56 96.93 97.01 97.28 96.9 96.93 97.13 97.16
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4.2 Sensitivity

From the accuracy table 4.2 we see that NB algorithm gives better performance in

maximum data set.

In case of DecisionTable gives the sensitivity zero(sometimes), that means it

considering all the class as a true negetive. It can not be cosider for defect prediction.

LOG, OneR, PART, J48, J48G algorithms giving average performance.

Table 4.2: Sensitivity

Methods NB LOG DT JRip OneR PART J48 J48G

CM1 0.4 0.267 0 0.2 0.133 0.333 0.2 0.2

JM1 0.198 0.102 0.07 0.157 0.109 0.03 0.131 0.123

KC1 0.434 0.238 0.197 0.328 0.254 0.32 0.32 0.32

KC3 0.412 0.412 0.118 0.118 0.176 0.353 0.353 0.353

MC1 0.548 0.161 0.194 0.161 0.161 0.194 0.161 0.161

MC2 0.571 0.545 0 0 0.091 0.5 0.045 0.045

MW1 0.429 0.286 0.429 0.143 .071 0.286 0.214 0.214

PC1 0.28 0.24 0.16 0.16 0.08 0.36 0.24 0.24

PC2 0.333 0 0 0 0 0 0 0

PC3 0.986 0.178 0 0.233 0.014 0.137 0.288 0.288

PC4 0.431 0.538 0.231 0.508 0.323 0.677 0.692 0.677

PC5 0.427 0.308 0.332 0.521 0.303 0.474 0.498 0.479
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4.3 Specificity

From the specificity table we can see some of the algoritm are giving 100 percent

specificity, that can not be cosider as there respective sensitivity zero. These

algorithms can give wrong predictin.

So According to the sensitivity and specificty DecisionTable algorithm should not

cosider for software defect prediction as they giving high 100% specificity bt 0%

sensitivity.

Table 4.3: Specificity

Methods NB LOG DT JRip OneR PART J48 J48G

CM1 0.893 0.951 1 0.943 0.984 0.789 0.943 0.951

JM1 0.956 0.988 0.99 0.968 0.957 0.994 0.954 0.956

KC1 0.898 0.976 0.959 0.937 0.932 0.927 0.947 0.947

KC3 0.873 0.794 0.921 0.937 0.857 0.937 0.921 0.952

MC1 0.947 1 0.999 0.999 1 0.999 1 1

MC2 0.724 0.759 1 1 0.931 0.862 0.897 0.931

MW1 0.848 0.848 0.924 0.978 0.978 0.978 0.957 0.957

PC1 0.943 0.982 0.993 0.957 0.989 0.946 0.935 0.943

PC2 0.946 0.997 1 0.998 1 1 0.995 0.995

PC3 0.219 0.976 0.958 0.944 0.987 0.96 0.926 0.942

PC4 0.929 0.968 0.99 0.956 0.978 0.909 0.907 0.917

PC5 0.983 0.99 0.991 0.987 0.99 0.985 0.986 0.987
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4.4 Balance

looking to the Accuracy, Sensitivity and Specificty performance table we cosider the

NB, LOG, JRip, OneR, PART, J48, J48G, as there performance are average.

From the graph figure 4.1 we see that, in maximum of cases the OneR algorithm

giving lowest balance value than others. So, no need to use for defect prediction.

Table 4.4: Balance

Methods NB LOG DT JRip OneR PART J48 J48G

CM1 0.569 0.481 0.293 0.433 0.387 0.505 0.433 0.433

JM1 0.432 0.365 0.342 0.403 0.369 0.314 0.385 0.379

KC1 0.593 0.461 0.431 0.523 0.47 0.516 0.518 0.518

KC3 0.575 0.559 0.374 0.375 0.409 0.54 0.539 0.541

MC1 0.678 0.407 0.43 0.407 0.407 0.43 0.407 0.407

MC2 0.639 0.636 0.293 0.293 0.355 0.633 0.321 0.323

MW1 0.582 0.484 0.593 0.394 0.343 0.495 0.443 0.443

PC1 0.489 0.462 0.406 0.405 0.349 0.546 0.461 0.461

PC2 0.527 0.293 0.293 0.293 0.293 0.293 0.293 0.293

PC3 0.448 0.419 0.292 0.456 0.303 0.389 0.494 0.495

PC4 0.595 0.673 0.456 0.651 0.521 0.763 0.772 0.764

PC5 0.595 0.511 0.528 0.661 0.507 0.628 0.645 0.631

Depending on Accuracy, Sensitivity, Specificity, Balance performance we choosen

6 Algoritms from 8 algoritms are–

• NaiveBayesSimple

• Logistic

• JRip

• PART

• J48 and J48Graft
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Figure 4.1: Balance

4.5 ROC Area

And the Software defect prediction performance based on ROC Area simulated by

our scheme given in the table:4.5..

According to ROC Area Logistic and Nayevbased algorithm gives the better

performance for software defect prediction.
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Table 4.5: Comparative Performance(ROC Area) of Software defect prediction.

Methods CM1 JM1 KC1 KC3 MC1 MC2 MW1 PC1 PC2 PC3 PC4 PC5

NB 0.685 0.681 0.801 0.745 0.861 0.745 0.666 0.736 0.846 0.793 0.84 0.804

Log 0.668 0.709 0.808 0.604 0.893 0.686 0.592 0.821 0.7 0.802 0.911 0.958

JRip 0.572 0.562 0.633 0.527 0.58 0.5 0.561 0.561 0.499 0.589 0.735 0.755

PART 0.492 0.713 0.709 0.612 0.773 0.639 0.611 0.566 0.481 0.728 0.821 0.942

J48 0.537 0.67 0.698 0.572 0.819 0.259 0.5 0.646 0.39 0.727 0.784 0.775

j48G 0.543 0.666 0.698 0.587 0.819 0.274 0.5 0.651 0.39 0.738 0.778 0.775

Figure 4.2: ROC Area

4.6 Comparision with other’s results

• In 2011 Song, Jia, Ying, and Liu propased a general framework. In that

framework they used OneR algortms for defect prediction, But that shuld no

be consider for defect prediction as it gives 0 sensitivity sometimes, and balance

values are very low than others.

• In 2007 MGF used considers only 10 data set, whereas in our research we used

12 data set with more modules in every data set. And in our result the balance

values are also greater than there results.

• In others works different machine learning algorithms are used. In our research
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Figure 4.3: Accuracy

the reults of comparative measurement values are increases.Mainly in accuracy

inceases as we used percentage split.
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Figure 4.4: Sensitivity

Figure 4.5: Specificity
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Figure 4.6: Balance
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Chapter 5

Conclusion

5.1 Concluding Remarks

In our research work we have attempted to solve the Software defect prediction

problem through different Data mining (Classification) algorithms.

In our research NB and Logistic algorithm gives the overall better performance for

defect prediction. PART and J48 gives better performance than OneR and JRip .

From these results, we see that a data preprocessor/attribute selector can play

different roles with different learning algorithms for different data sets and that no

learning scheme dominates, i.e., always outperforms the others for all data sets.

This means we should choose different learning schemes for different data sets, and

consequently, the evaluation and decision process is important.

In order to improve the efficiency and quality of software development, we can

make use of the advantage of data mining to analysis and predict large number of

defect data collected in the software development. This paper reviewed the current

state of software defect management, software defect prediction models and data

mining technology briefly. Then proposed an ideal software defect management

and prediction system, researched and analyzed several software defect prediction

methods based on data mining techniques and specific models(NB, Logistic, PART,
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J48G)

5.2 Scope for Further Research

• Clustering based classification can be used.

• Future studies could focus on comparing more classification methods and

improving association rule based classification methods

• Furthermore, the pruning of rules for association rule based classification

methods can be considered.
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